Tuesday, 27 August 2013

THE STORY OF HUMAN RIGHTS




''THE STORY OF HUMAN RIGHTS''



Ever since human rights became the controversial issue that it is today, western countries have constantly clashed with other cultures over differing ideologies on the topic.   The introduction of the media as a continuous broadcaster of international news has moved the inhumane conditions that exist in some countries into the spotlight.   The result of this has been a painful realization that many cultures have a contrasting philosophy on the subject of human rights.   The happenings in Eastern Europe over the last decade and at present in Kosovo are testament to this; human rights do not seem to be an inherent part of many cultures, China included.   We in the west take for granted things like the freedoms of speech, press and association and struggle to comprehend the fact that people are literally dying to gain the same rights.   China is a country that, historically, has had a different viewpoint on human rights.   This stems back to Confucian days but also includes the Marxist idea that the collective wellbeing is considered vastly superior to the individual.   As a result, it is little wonder that when the west and countries like China open up a human rights dialogue, confrontations are inevitable.

Human rights in China had its origins at about the same time that the Ching dynasty collapsed and again in 1911 as part of Sun Yet Sing's program.   Eight years later in 1919, a new iconoclastic movement took over and the appeal of human rights for the radicals of the time came about because it gave them the antithesis of Confucian values, the self.   This antithesis aided them in their quest to escape the imperialism of the time and modernize China.   Confucian teachings urge the government to rule humanely and with virtue.   The ultimate goal of helping the common-people to become educated and thus prosper.   Harsh laws and severe punishments, which were common in Confucius' day, should be abolished.   In short, his theories of governing were in complete contrast to those..







                                                   

Thursday, 15 August 2013

Hwan Young Lee, Myung Jin Park, Na Young Kim, Jeong Eun Sim, Woo Ick Yang, Kyoung-Jin Shin
Forensic Science International: Genetics 2010;4:275-280.
Authors compared various silica-based DNA concentration/extraction methods using quantitative real-time PCR to assess DNA yield and removal of PCR inhibitors and presented a simple and highly effective DNA extraction method for genotyping of old skeletal remains. The need for this study was to limit DNA typing failures mainly in skeletal remains due to procurement of small quantity of endogenous DNA, likelihood of DNA degradation, possible presence of PCR inhibitors and risk of contamination.
Authors used skeletal remains for genomic DNA, artificially prepared degraded DNA along with, PCR inhibitors like porcine hematin and humic acid, real-time PCR to determine DNA concentration and STR analysis. DNA concentration/purification methods were assessed by two commercially available kits i.e., QIAamp mini spin columns and QIAquick spin column and another modified method with QIA blood maxi column. DNA concentration/purification methods were tested with known concentrations of PCR inhibitors at varies concentrations 20, 50 and 100μM of hematin and 2.5, 12.5, 25.0 and 50.0 ng/μl of humic acid. Three methods (A,B,C) of demineralization procedure after cryogenic grinding were tested to assess DNA extraction from old skeletal remains. QIAamp mini spin columns showed higher DNA recovery because of the larger binding surface increasing adsorption by more number of silica particles. At highest concentration of humic acid the QIAamp mini kit showed increased CT value (>28.0). Method C in which organic grinding and complete demineralization with high concentrations of EDTA is followed by DNA extraction procedure using QIAamp blood maxi spin columns and buffers from the QIAquick PCR purification kit showed more efficient results in DNA extraction. Therefore, this method increases the possibility of obtaining authentic DNA profiles from highly degraded samples, thereby contributing to solve forensic cases dealing with skeletal remains. Authors developed a simple and highly effective method for DNA extraction from old skeletal remains in terms of high-quality DNA recovery and PCR inhibitor removal by optimizing the combination of silica columns and buffers.
Room temperature DNA preservation of soft tissue for rapid DNA extraction: An addition to the disaster victim identification investigators toolkit?
E.A.M. Graham, E.E. Turk, G.N. Rutty
Forensic Science International: Genetics 2008:2;29-34.
In case of calamity a massive number of bodies will be recovered showing DNA fragmentation, decomposition and putrefaction due to the tropical climate of the area and present a different challenge to disaster victim identification teams. DNA profiling is proven useful in allowing identification and re-association of fragmented, burnt or decomposed corpses that would be difficult or impossible using traditional techniques. Usually samples collected for DNA identification are usually stored at -20°C to halt the degradation processes but DNA extraction from these samples must be defrosted, removed from the container, dissected, weighed, macerated and then should be digested for 1-3 hours.
Authors have examined the ability of two buffer solutions; Lysis storage and transportation (LST) buffer and the Oragene DNA self-collection kit to preserve DNA present in fresh muscle tissue at various room temperatures ranging from 16° to 30.5°C with an average of 24.2°C over a period of 52 weeks. On DNA quantification using real-time PCR both buffer solutions have shown sufficient DNA preservation over a 12-month period of storage at room temperature to allow DNA profiling, which was successfully performed when 5-1000 mg muscle tissue was stored in each solution. Oragene collection pots are superior to LST buffer in recovery of high DNA yield. The quality of DNA recovered from tissue stored in LST buffer is not significantly reduced compared with that recovered from samples stored in Oragene collection pots. Also yield of DNA per mg of tissue stored was greater when samples were stored in 1 ml rather than 5 ml LST also, better suited to the preservation of small (<100 mg) amounts of tissue. Authors concluded both buffer solutions could be used as an alternative to freezing of samples for DNA preservation over a 12-month period of storage at room temperature.
Authentication of forensic DNA samples
Dan Frumkin, Adam Wasserstrom, Ariane Davidson, Arnon Grafit
Forensic Science International: Genetics 2010;4:95-103.
In recent years DNA evidence has become the “gold standard” of forensic testing and is an invaluable tool for criminal justice community. The possibility that DNA evidence can be faked and planted in crime scenes is normally overlooked. Artificial DNA can be applied to surface objects or incorporated into genuine human tissues and planted in crime scenes but, current forensic procedure fails to distinguish between such samples of blood, saliva and touched surfaces with artificial DNA and corresponding samples with in vivo generated DNA.
Authors developed an authentication assay which distinguishes between natural and artificial DNA based on the fact that in vitro synthesized DNA is completely unmethylated and in vivo generated DNA contains loci that are completely and consistently methylated. Sodium bisulphite converts all unmethylated cytosines to uracils leaving methylated cytosines unaffected. PCR amplification was done on a set of genomic loci containing one reference CODIS locus (FGAref) and four non-CODIS loci (NT18, ADD6, MS53, SW14). Authors applied the DNA authentication assay to 20 mock forensic samples-10 with natural DNA, 10 with artificial DNA and a negative control sample without DNA. All samples with natural DNA showed successful amplification of all loci and the FGAref amplicon was present in all samples. Samples with artificial DNA failed to amplify the four non-CODIS loci. These samples were therefore determined to be non-authentic. Few whole genome amplification (WGA) synthesized DNA showed amplification for all loci similar to natural DNA. Natural DNA showed complete methylation of all CPG positions in NT18 and ADD6 and no methylation in any of the CPG positions in MS53 and SM14 where as WGA synthesized samples showed complete lack of methylation in all loci. Authors presented an authentication assay for casework sample as part of the forensic procedure is necessary for maintaining in high credibility of DNA evidence in the judiciary system.
Reliable genetic identification of burnt human remains
Thorsten Schwark, Anke Heinrich, Andrea Preuße-Prange, Nicole Von Wurmb-Schwark
Forensic Science International: Genetics 2010: Sep 8. [Epub ahead of print]
In cases of mass disasters involving generation of high temperatures, suicidal burning, car accidents, domestic fire or in cases where fire may have been set in order to conceal a crime forensic analysis is dealt with burnt bodies of which only bones or bone fragments are available for reliable genetic identification. Extremely charred bodies frequently render highly degraded DNA which hampers STR analysis. Also, PCR inhibitors will be coextracted during DNA isolation of burnt bodies e.g., gasoline, melted plastic or textiles infiltrated into the bone during incineration.
Authors investigated 13 human bodies in various degrees of burn based on color grades which deduce the approximate burning temperature: a yellowish or brownish discoloration correlates with temperatures of 200-300°C, black with temperatures of 300-350°C, grey with temperatures of 550-600°C, and white with temperatures higher than 650°C. Also authors aimed to investigate whether original DNA can be successfully be extracted from differently burnt bones and can it be reproducibly analyzed using STR profiling and mtDNA sequencing. A total of 71 compact bones were analyzed: 9 are well-preserved, 18 are semi-burnt, 26 are black-burnt, 10 are blue-grey burnt and 8 are blue-grey-white burnt. From these samples DNA extraction was done and DNA quality was tested using a GeneAmp PCR system 2700 developed for highly degraded DNA. All samples of well preserved and semi-burnt bones gave a full screening profile. Black-burnt bones showed a variable pattern ranging from a full profile to a complete allelic drop out. Blue-grey and blue-grey-white bones resulted in negative results. According to authors negative PCR results were most probably caused by either highly degraded or even a total lack of template DNA. STR analysis was performed using AmpFlSTR identifiler blue-grey burnt bones was successful in few instances whereas typing of blue-grey-white burnt bones succeeded only sporadically probably due to bone adherent soft tissue. Amplification of mitochondrial DNA was done using two HVI-specific mitochondrial fragments (220 bp and 439 bp). Later PCR products were separated on ethidium bromide-stained 2% agarose gels and quantified on a Geldoc EQ system, amplicon amounts of about 10 ng were judged as sufficient for sequencing. Well-preserved and semi-burnt bones yielded sufficient quantities of both HVI fragments whereas only the smaller 220 bp HVI fragment was detectable in case of black burnt, blue-grey burnt and blue-grey-white burnt bones. Finally they concluded that analysis of mitochondrial DNA is more promising as it is present in higher copy numbers per cell than nuclear DNA in case of burnt sample.
Sex-specific fluorescent labelling of cells for laser microdissection and DNA profiling
K. Anslinger, B. Bayer, B. Mack, W. Eisenmenger
International Journal Legal Medicine 2007;121:54-56.
Laser microdissection (LMD) is currently the method of choice for single-cell isolation and widely used in research. LMD can also greatly improve the recovery of male DNA from unfavorable mixtures of male and female cells. Male- and female-specific florescent labels are used for hybridization inorder to isolate single male and female cell from a mixture of cells. With this study authors wanted to test whether DNA profiling of LMD isolated, fluorescent hybridized cells could be used for successful short tandem repeat profiling.
Five microliters of blood samples from both male and female individuals were spread over a poly-l-lysine-coated slides. Few smeared slides were used directly and few were air-dried for 1 week in order to simulate forensic casework. Later cells were transferred from one slide to another by two transfer techniques one using a presoaked swab and other by pipetting. Pepsin solution was added for enzyme digestion and later subjected to hybridization. In order to obtain different fluroscent signals Y-specific spectrum green label was used and X-specific spectrum orange label was used. After successful hybridization female cells showed two red signals whereas male cells showed one green and one red signal. From the stained slides 10, 20, 30 and 40 cells were isolated using SL μCut LMD system (MMI). After cell isolation DNA was extracted using QIAamp DNA microkit and subjected to multiplex PCR using AmpF1STR SGM Plus kit and PCR products were analysed on an ABI PRISM 3100 Avant capillary electrophoresis system. Results showed successful hybridization with both native and dried blood cells with male and female cells showing different signals. By means of LMD isolation of hybridized cells a full STR profile was obtained from samples containing atleast 30 cells. Samples with 20 cells yielded a partial profile with one or two locus drop-outs. Thus, this method would appear to be suitable in forensic stain investigation.
Validation of SRY marker for forensic casework analysis
Vanja Kastelic, Bruce Budowle and Katja Drobnic
Journal Forensic Science 2009:54(3);551-555.
Determination of gender for a forensic DNA sample at times can be informative in various forensic investigations, especially in sexual assault cases. Sex determination is routinely performed by amplifying a region of amelogenin by the PCR. Owing to the discrepancy in the structural variability within the Y chromosome, several studies have shown that amelogenin gender test is not always correct with true male gender determination in forensic casework or in prenatal diagnosis. To reduce the potential interpretation difficulties authors have investigated using genetic markers lying in the sex-determination region Y (SRY) on the Y chromosome.
This study was undertaken by the authors to perform some validation studies including repeatability, sensitivity, gender specificity and mixture studies on SRY marker for use in forensic cases. Quantification of DNA was conducted using the Quantifiler Human DNA Quantification Kit and DNA Typing was done by combining the amplified product with the Genscan-500 ROX internal line standard and loaded on an ABI Prism 310 genetic analyser.
Repeatability of DNA samples obtained from buccal swabs taken from 115 unrelated male individuals showed successful amplification and typing of SRY marker. On capillary electrophoresis samples yielded sizes of 94.44±0.07 bp (base pair), 94.47±0.18 bp and 94.36±0.06 bp. These lengths in bp are slightly lower than the known 96-bp size of the amplicon. No null allele was observed, SRY marker enables precise and repeatable results for male gender determination as a single system. Sensitivity studies showed reliable male gender determination for routine forensic samples with a DNA quantity as low as 125 pg. Gender-specificity was performed using two female DNA samples, which cross-reacted with SRY marker assay in a singleplex amplification but this multiplex assay failed to produce detectable SRY product from female control DNA even at concentrations of 5 and 10 ng/μL, this data support that SRY primer is highly specific for the SRY gene on the Y chromosome. Mixture studies were carried out in a multiplex reaction. The presence of a high background of female DNA in a sample had no impact on amplification of SRY marker down to the tested ratio of 1:16. Therefore mixtures with low amounts of male DNA with high concentrations of female DNA can be typed with the SRY male gender assay. The authors concluded that SRY is a sensitive and reliable male gender marker.

Articles from Journal of Forensic Dental Sciences are provided here courtesy of Medknow Publications

Wednesday, 14 August 2013

forensic trends

Forensic science

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Forensic science (often known as forensics) is the application of a broad spectrum of sciences and technologies to investigate and establish facts of interest in relation to criminal or civil law.[1] The word forensic comes from the Latin forēnsis, meaning "of or before the forum."[2] In Roman times, a criminal charge meant presenting the case before a group of public individuals in the forum. Both the person accused of the crime and the accuser would give speeches based on their sides of the story. The individual with the best argument and delivery would determine the outcome of the case. This origin is the source of the two modern usages of the word forensic – as a form of legal evidence and as a category of public presentation.
In modern use, the term "forensics" in the place of "forensic science" can be considered correct as the term "forensic" is effectively a synonym for "legal" or "related to courts". However the term is now so closely associated with the scientific field that many dictionaries include the meaning that equates the word "forensics" with "forensic science".
In the United States there are over 12,000 Forensic Science technicians, as of 2010.[3]

History

Antiquity and the Middle Age

Archimedes may have used his principle of buoyancy to determine whether the golden crown was less dense than solid gold.
The ancient world lacked standardized forensic practices, which aided criminals in escaping punishment. Criminal investigations and trials relied on forced confessions and witness testimony. However ancient sources contain several accounts of techniques that foreshadow the concepts of forensic science that is developed centuries later, such as the "Eureka" legend told of Archimedes (287–212 BC).[4] The account about Archimedes tells of how he invented a method for determining the volume of an object with an irregular shape. According to Vitruvius, a votive crown for a temple had been made for King Hiero II, who had supplied the pure gold to be used, and Archimedes was asked to determine whether some silver had been substituted by the dishonest goldsmith.[5] Archimedes had to solve the problem without damaging the crown, so he could not melt it down into a regularly shaped body in order to calculate its density.
The first written account of using medicine and entomology to solve (separate) criminal cases is attributed to the book of Xi Yuan Lu (translated as "Washing Away of Wrongs"[6][7]), written in Song Dynasty China by Song Ci (宋慈, 1186–1249) in 1248. In one of the accounts, the case of a person murdered with a sickle was solved by a death investigator who instructed everyone to bring his sickle to one location. (He realized it was a sickle by testing various blades on an animal carcass and comparing the wound.) Flies, attracted by the smell of blood, eventually gathered on a single sickle. In light of this, the murderer confessed. The book also offered advice on how to distinguish between a drowning (water in the lungs) and strangulation (broken neck cartilage), along with other evidence from examining corpses on determining if a death was caused by murder, suicide or an accident.
Methods from around the world involved saliva and examination of the mouth and tongue to determine innocence or guilt. In ancient Chinese cultures, sometimes suspects were made to fill their mouths with dried rice and spit it back out. In ancient middle-eastern cultures the accused were made to lick hot metal rods briefly. Both of these test had some validity since a guilty person would produce less saliva and thus have a drier mouth. The accused were considered guilty if rice was sticking to their mouth in abundance or if their tongues were severely burned due to lack of shielding from saliva.

Modern history

In the 16th-century Europe medical practitioners in army and university settings began to gather information on cause and manner of death. Ambroise Paré, a French army surgeon, systematically studied the effects of violent death on internal organs. Two Italian surgeons, Fortunato Fidelis and Paolo Zacchia, laid the foundation of modern pathology by studying changes that occurred in the structure of the body as the result of disease. In the late 18th century, writings on these topics began to appear. These included A Treatise on Forensic Medicine and Public Health by the French physician Fodéré and The Complete System of Police Medicine by the German medical expert Johann Peter Franck.
In 1773 a Swedish chemist Carl Wilhelm Scheele devised a way of detecting arsenous oxide, simple arsenic, in corpses, although only in large quantities. This investigation was expanded, in 1806, by German chemist Valentin Ross, who learned to detect the poison in the walls of a victim's stomach, and by English chemist James Marsh, who used chemical processes to confirm arsenic as the cause of death in an 1836 murder trial.
Two early examples of English forensic science in individual legal proceedings demonstrate the increasing use of logic and procedure in criminal investigations. In 1784, in Lancaster, John Toms was tried and convicted for murdering Edward Culshaw with a pistol. When the dead body of Culshaw was examined, a pistol wad (crushed paper used to secure powder and balls in the muzzle) found in his head wound matched perfectly with a torn newspaper found in Toms' pocket. In Warwick in 1816, a farm labourer was tried and convicted of the murder of a young maidservant. She had been drowned in a shallow pool and bore the marks of violent assault. The police found footprints and an impression from corduroy cloth with a sewn patch in the damp earth near the pool. There were also scattered grains of wheat and chaff. The breeches of a farm labourer who had been threshing wheat nearby were examined and corresponded exactly to the impression in the earth near the pool.[8] Police started using fingerprints for evidence when Juan Vucetich solved a murder case in Argentina by cutting off a piece of door with a bloody fingerprint on it.[9] Later in the 20th century several British pathologists, Bernard Spilsbury, Francis Camps, Sydney Smith and Keith Simpson pioneered new forensic science methods in Britain. In 1909 Rodolphe Archibald Reiss founded the first school of forensic science in the world: the Institut de police scientifique of the University of Lausanne (UNIL).
Forensic science has been fostered by a number of national forensic science learned bodies including the American Academy of Forensic Sciences (founded 1948; publishers of the Journal of Forensic Sciences), the Canadian Society of Forensic Science (founded 1953; publishers of the Journal of the Canadian Society of Forensic Science), The British Academy of Forensic Sciences (founded 1960; publishers of Medicine,science and the law (journal)), and the Australian Academy of Forensic Sciences (founded 1967; publishers of the Australian Journal of Forensic Sciences).
A history of forensic photography can be viewed here.

Subdivisions

Agents of the United States Army Criminal Investigation Division investigate a crime scene
Police forensic investigation in Ashton-under-Lyne, England, using a tent to protect the crime scene
  • Computational forensics concerns the development of algorithms and software to assist forensic examination.
  • Criminalistics is the application of various sciences to answer questions relating to examination and comparison of biological evidence, trace evidence, impression evidence (such as fingerprints, footwear impressions, and tire tracks), controlled substances, ballistics, firearm and toolmark examination, and other evidence in criminal investigations. In typical circumstances evidence is processed in a Crime lab.
  • Digital forensics is the application of proven scientific methods and techniques in order to recover data from electronic / digital media. Digital Forensic specialists work in the field as well as in the lab.
  • Forensic accounting is the study and interpretation of accounting evidence
  • Forensic aerial photography is the study and interpretation of aerial photographic evidence
  • Forensic anthropology is the application of physical anthropology in a legal setting, usually for the recovery and identification of skeletonized human remains.
  • Forensic archaeology is the application of a combination of archaeological techniques and forensic science, typically in law enforcement.
  • Forensic astronomy uses methods from astronomy to determine past celestial constellations for forensic purposes.
  • Forensic botany is the study of plant life in order to gain information regarding possible crimes.
  • Forensic chemistry is the study of detection and identification of illicit drugs, accelerants used in arson cases, explosive and gunshot residue.
  • Forensic dactyloscopy is the study of fingerprints.
  • Forensic document examination or questioned document examination answers questions about a disputed document using a variety of scientific processes and methods. Many examinations involve a comparison of the questioned document, or components of the document, with a set of known standards. The most common type of examination involves handwriting, whereby the examiner tries to address concerns about potential authorship.
  • Forensic DNA analysis takes advantage of the uniqueness of an individual's DNA to answer forensic questions such as paternity/maternity testing and placing a suspect at a crime scene, e.g. in a rape investigation.
  • Forensic engineering is the scientific examination and analysis of structures and products relating to their failure or cause of damage.
  • Forensic entomology deals with the examination of insects in, on and around human remains to assist in determination of time or location of death. It is also possible to determine if the body was moved after death using entomology.
  • Forensic geology deals with trace evidence in the form of soils, minerals and petroleum.
  • Forensic geophysics is the application of geophysical techniques such as radar for detecting objects hidden underground or underwater.[10]
  • Forensic intelligence process starts with the collection of data and ends with the integration of results within into the analysis of crimes under investigation[11]
  • Forensic Interviews are conducted using the science of professionally using expertise to conduct a variety of investigative interviews with victims, witnesses, suspects or other sources to determine the facts regarding suspicions, allegations or specific incidents in either public or private sector settings.
  • Forensic limnology is the analysis of evidence collected from crime scenes in or around fresh-water sources. Examination of biological organisms, in particular diatoms, can be useful in connecting suspects with victims.
  • Forensic linguistics deals with issues in the legal system that requires linguistic expertise.
  • Forensic meteorology is a site-specific analysis of past weather conditions for a point of loss.
  • Forensic odontology is the study of the uniqueness of dentition, better known as the study of teeth.
  • Forensic optometry is the study of glasses and other eye wear relating to crime scenes and criminal investigations
  • Forensic pathology is a field in which the principles of medicine and pathology are applied to determine a cause of death or injury in the context of a legal inquiry.
  • Forensic podiatry is an application of the study of feet footprint or footwear and their traces to analyze scene of crime and to establish personal identity in forensic examinations.
  • Forensic psychiatry is a specialized branch of psychiatry as applied to and based on scientific criminology.
  • Forensic psychology is the study of the mind of an individual, using forensic methods. Usually it determines the circumstances behind a criminal's behavior.
  • Forensic seismology is the study of techniques to distinguish the seismic signals generated by underground nuclear explosions from those generated by earthquakes.
  • Forensic serology is the study of the body fluids.[12]
  • Forensic toxicology is the study of the effect of drugs and poisons on/in the human body.
  • Forensic video analysis is the scientific examination, comparison and evaluation of video in legal matters.
  • Mobile device forensics is the scientific examination and evaluation of evidence found in mobile phones, e.g. Call History and Deleted SMS, and includes SIM Card Forensics
  • Trace evidence analysis is the analysis and comparison of trace evidence including glass, paint, fibres and hair.
  • Wildlife Forensic Science applies a range of scientific disciplines to legal cases involving non-human biological evidence, to solve crimes such as poaching, animal abuse, and trade in endangered species.
Blood Spatter Analysis is the scientific examination of blood spatter patterns found at a crime scene to reconstruct the events of the crime.
  • Forensic Investigation also known as forensic audit is the examination of documents and the interviewing of people to extract evidence.

Notable forensic scientists

Self-portrait of Alphonse Bertillon, inventor of anthropometry

Questionable techniques

Some forensic techniques, believed to be scientifically sound at the time they were used, have turned out later to have much less scientific merit or none.[13] Some such techniques include:
  • Comparative bullet-lead analysis was used by the FBI for over four decades, starting with the John F. Kennedy assassination in 1963. The theory was that each batch of ammunition possessed a chemical makeup so distinct that a bullet could be traced back to a particular batch or even a specific box. Internal studies and an outside study by the National Academy of Sciences found that the technique was unreliable, and the FBI abandoned the test in 2005.[14]
  • Forensic dentistry has come under fire: in at least two cases bite-mark evidence has been used to convict people of murder who were later freed by DNA evidence. A 1999 study by a member of the American Board of Forensic Odontology found a 63 percent rate of false identifications and is commonly referenced within online news stories and conspiracy websites.[15][16] The study was based on an informal workshop during an ABFO meeting, which many members did not consider a valid scientific setting.[17]
  • Scientists have also shown, in recent years, that it is possible to fabricate DNA evidence, thus "undermining the credibility of what has been considered the gold standard of proof in criminal cases".[18]

Litigation science

Litigation science describes analysis or data developed or produced expressly for use in a trial versus those produced in the course of independent research. This distinction was made by the US 9th Circuit Court of Appeals when evaluating the admissibility of experts.[19]
This uses demonstrative evidence, which is evidence created in preparation of trial by attorneys or paralegals.

Examples in popular culture

Joseph Bell
The Argentinean writer Jorge Luis Borges claims that the police novel genre is inaugurated with The Murders in the Rue Morgue of Edgar Allan Poe. But it is first Sherlock Holmes, the fictional character created by Sir Arthur Conan Doyle in works produced from 1887 to 1915, who used forensic science as one of his investigating methods. Conan Doyle credited the inspiration for Holmes on his teacher at the medical school of the University of Edinburgh, the gifted surgeon and forensic detective Joseph Bell. Agatha Christie's Hercule Poirot and Miss Marple books and television series glorify too a similar prototype.
Decades later the comic strip Dick Tracy also featured a detective using a considerable number of forensic methods, although sometimes the methods were more fanciful than actually possible.
Barry Allen (alter ego of The Flash) is a forensic scientist for the Central City police department.
Defence attorney Perry Mason occasionally used forensic techniques, both in the novels and television series.
One of the earliest television series to focus on the scientific analysis of evidence was Quincy, M.E. (1976–83, and based loosely on an even earlier Canadian series titled Wojeck), with the title character, a medical examiner working in Los Angeles solving crimes through careful study. The opening theme of each episode featured a clip of the title character, played by Jack Klugman, beginning a lecture to a group of police officers with "Gentlemen, you are about to enter the most fascinating sphere of police work, the world of forensic medicine." Later series with similar premises include Dexter, The Mentalist, CSI, Hawaii Five-0, Cold Case, Bones, Law & Order, Body of Proof, NCIS, Criminal Minds, Silent Witness, Case Closed, Midsomer Murders and Waking the Dead, depict glamorized versions of the activities of 21st-century forensic scientists. Some claim these TV shows have changed individuals' expectations of forensic science, an influence termed the "CSI effect".[20]
Non-fiction TV shows such as Forensic Files, The New Detectives, American Justice, and Dayle Hinman's Body of Evidence have also popularized forensic science.
The Ace Attorney series features forensic science, mainly in Apollo Justice: Ace Attorney and the DS-only case in Phoenix Wright: Ace Attorney.

Controversies

Questions about forensic science, fingerprint evidence and the assumption behind these disciplines have been brought to light in some publications,[21][22] the latest being an article in the New York Post.[23] The article stated that "No one has proved even the basic assumption: That everyone's fingerprint is unique."[23] The article also stated that "Now such assumptions are being questioned - and with it may come a radical change in how forensic science is used by police departments and prosecutors."[23] Law professor Jessica Gabel said on NOVA that forensic science, "lacks the rigors, the standards, the quality controls and procedures that we find, usually, in science."[24]
On 25 June 2009 the Supreme Court issued a 5-to-4 decision in Melendez-Diaz v. Massachusetts stating that crime laboratory reports may not be used against criminal defendants at trial unless the analysts responsible for creating them give testimony and subject themselves to cross-examination. The Supreme Court cited the National Academies report Strengthening Forensic Science in the United States[25] in their decision. Writing for the majority, Justice Antonin Scalia referred to the National Research Council report in his assertion that "Forensic evidence is not uniquely immune from the risk of manipulation."
In 2009, scientists indicated that it is possible to fabricate DNA evidence therefore suggesting it is possible to falsely accuse or acquit a person or persons using forged evidence.[18]
Although forensic science has greatly enhanced investigators ability to solve crimes, they have limitations and must be scrutinized in and out of the courtroom to avoid wrongful convictions, which have happened.[26]

See also

References

  1. ^ The Free Dictionary, By farlex. "Forensics". Ads By Google. . http://www.thefreedictionary.com/forensics
  2. ^ Shorter Oxford English Dictionary (6th ed.), Oxford University Press, 2007, ISBN 978-0-19-920687-2
  3. ^ U.S. Department of Labor. Bureau of Labor Statistics. Occupational Employment and Wages, May 2011. "19-4092 Forensic Science Technicians". http://www.bls.gov/oes/current/oes194092.htm
  4. ^ Schafer, Elizabeth D. (2008). "Ancient science and forensics". In Ayn Embar-seddon, Allan D. Pass (eds.). Forensic Science. Salem Press. p. 40. ISBN 978-1-58765-423-7.
  5. ^ Vitruvius. "De Architectura, Book IX, paragraphs 9–12, text in English and Latin". University of Chicago. Retrieved 2007-08-30.
  6. ^ "Forensics Timeline". Cbsnews.com. Retrieved 2011-12-20.
  7. ^ A Brief Background of Forensic Science
  8. ^ Kind S, Overman M (1972). Science Against Crime. New York: Doubleday. pp. 12–13. ISBN 0-385-09249-0.
  9. ^ "Juan Vucetich". Easybuenosairescity.com. 1925-01-25. Retrieved 2010-06-08.
  10. ^ "CSI: Geophysics". Physics.org. Retrieved 2011-12-20.
  11. ^ p.611 Jahankhani,Hamid; Watson, David Lilburn; Me, Gianluigi Handbook of Electronic Security and Digital Forensics World Scientific, 2009
  12. ^ "Forensic serology". Forensic-medecine.info. Retrieved 2010-06-08.
  13. ^ Saks, Michael J.; Faigman, David L. (2008). "Failed forensics: how forensic science lost its way and how it might yet find it". Annual Review of Law and Social Science 4: 149–171. doi:10.1146/annurev.lawsocsci.4.110707.172303.
  14. ^ Solomon, John (2007-11-18). "FBI's Forensic Test Full of Holes". The Washington Post. p. A1. Retrieved 2008-03-05.
  15. ^ Santos, Fernanda (2007-01-28). "Evidence From Bite Marks, It Turns Out, Is Not So Elementary". The New York Times. Retrieved 2008-03-05.
  16. ^ McRoberts, Flynn (2004-11-29). "Bite-mark verdict faces new scrutiny". Chicago Tribune. Retrieved 2008-03-05.
  17. ^ McRoberts, Flynn (2004-10-19). "From the start, a faulty science". Chicago Tribune. Retrieved 2008-07-13.[dead link]
  18. ^ a b Polloack, Andrew. "DNA Evidence Can Be Fabricated, Scientists Show". New York Times. http://www.nytimes.com/2009/08/18/science/18dna.html. August 17, 2009
  19. ^ Raloff, Janet (2008-01-19). "Judging Science". Science News. pp. 42 (Vol. 173, No. 3). Archived from the original on 2008-02-28. Retrieved 2008-03-05.
  20. ^ Holmgren, Janne A.; Fordham, Judith (January 2011). "The CSI Effect and the Canadian and the Australian Jury". Journal of Forensic Sciences 56 (S1): S63–S71. doi:10.1111/j.1556-4029.2010.01621.x
  21. ^ "'Badly Fragmented' Forensic Science System Needs Overhaul". The National Academies. February 18, 2009. Retrieved 2009-03-09.
  22. ^ "National Academy of Sciences Finds 'Serious Deficiencies' in Nation's Crime Labs". National Association of Criminal Defense Lawyers. February 18, 2009. Retrieved 2009-03-07.
  23. ^ a b c Katherine Ramsland (Sunday, March 6, 2009). "CSI: Without a clue; A new report forces Police and Judges to rethink forensic science". The New York Post, PostScript. Retrieved 2009-03-07.
  24. ^ Jessica Gabel, lawyer and lecturer from NOVA "Forensics on Trial" http://www.pbs.org/wgbh/nova/tech/forensics-on-trial.html
  25. ^ "Strengthening Forensic Science in the United States: A Path Forward". Nap.edu. Retrieved 2010-06-08.
  26. ^ Fabiola Carletti (Tuesday, August 21, 2012). "How body parts evidence gets from crime scene to courtroom". CBC News, PostScript. Retrieved 2012-08-21.

Further reading

External links